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FITZ-CLARKE, JOHN R., R. H. MORTON, AND E. W. BANIS- Glossary 
TER. Optimizing athletic performance by influence curves. J. 
Appl. Physiol. 71(3): 1151-1158, 1991.-Recent application of Dose 
modeling techniques to physical training has opened the possi- 
bility for prediction from training. Solution of the inverse prob- 
lem, determining a training program to produce a desired per- 
formance at a specific time, is also possible and may yield strate- 

g(t) 

gies for achieving better training and tapering (complete or 
relative rest for a period before competition) regimens for com- 
petitive athletes. A mathematical technique derived from 
model theory is described in this paper that allows the design of 
an optimal strategy of physical preparation for an individual to 
do well in a single future competitive event or cluster of events. 
Simulation results, using default parameters of a training 
model, suggest that presently accepted forms of taper for com- 
petition may remain too rigorous and short in duration to 
achieve the best result possible from the training undertaken. 

k 1 Arbitrary weighting factor for fitness, dimen- 
training; taper 

k 2 

ACHIEVING OPTIMAL athletic performance requires an UP) 
understanding of the effects of training during a competi- 
tive season so that strategies may be designed to place an 
athlete in peak condition at the exact time of competi- 
tion. Training is still largely based on experience and p@) 
intuition, but further improvement is possible if training 
effects can be quantified and optimized. A systems model 
for human performance (1) provides such a possibility 
and has been used to correlate training with performance 
under a wide variety of conditions with promising results. G 
The basic assumption is that a training impulse w(t) 
(over time t), or dose of training, contributes to both fit- 
ness g(t) and fatigue h(t), and performance p(t) is related tk 
to the difference between these two quantities at any 
point in time. The detailed mathematics of this model are 4, 
described elsewhere (6). 

This paper presents a convenient technique for study- 
ing the inverse problem: given a desired performance $ 
p(t,) for a competition at time tp, what training program, 
defined from w(t), frequency of training, and character- 4 
istics of the taper procedure will achieve this result? 
More importantly, how may performance be maximized w, 
at any future time given the previous training history? w(t) 
To answer these questions, an influence curve technique 
is defined that allows conceptualization of the effect of 
each consecutive day’s training on subsequent perfor- 
mance. The method may be used to design an optimal 
training strategy for a single performance or for several p 
events in a competitive season. 

Alternative expression for quantity of training 
w(t) absorbed in a single training session, arbi- 
trary units 
Hypothesized model component of perfor- 
mance ability, termed fitness, calculated from 
quantity of training undertaken, arbitrary 
units 
Hypothesized model component of perfor- 
mance ability, termed fatigue, calculated from 
quantity of training w(t) undertaken, arbitrary 
units 
An integral function used to calculate perfor- 
mance after a period of uniform training, arbi- 
trary units 

sionless (initially 1) 
Arbitrary weighting factor for fatigue, dimen- 
sionless (initially 2) 
Influence curve ordinate that multiplies individ- 
ual training impulse value wi to give a contribu- 
tion to performance at a future time when p = 
0, dimensionless 
Model-predicted performance determined from 
difference between weighted-model fitness 
k,g( t) and weighted-model fatigue k2h( t) at any 
time t during a training program, arbitrary 
units 
Time measured before performance when 
training has maximum benefit at t,, and influ- 
ence curve has maximum ordinate here, days 
Time period from cessation of training to peak 
performance, days 
Time measured before performance within 
which training contributes more to fatigue than 
to fitness, days 
Time of specific performance from specific 
time of onset of training, days 
Interval of uniform training days followed by 
immediate cessation, days - 
Standard training impulse, arbitrary units 
Assessment of amount of training undertaken 
during a training session, also defined as a 
training impulse or dose and calculated as prod- 
uct of time (in min) spent training and change 
in heart rate ratio, arbitrary units 
Time interval measured before time of perfor- 
mance t,, after a period of training, days 
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71 

72 

Time constant determining time course of de- 
cay in accumulated fitness g(t) between train- 
ing sessions, days 
Time constant determining time course of de- 
cay in accumulated fatigue h(t) between train- 
ing sessions, days 

INFLUENCE CURVES 

An influence curve is a map or template showing how a 
function, distributed over a domain, affects a response at 
a specific point. For example, training may be considered 
as a dose distributed over the time domain resulting in 
performance at some future point in time. The influence 
curve is, by definition, the line representing the effect of 
a unit training impulse at any general time t on perfor- 
mance at a specific future time tD. Thus, in a model of the 
effect of training on performance previously described 
for college swimmers (3), moderately trained runners (6), 
and more recently for elite weight lifters (2), after allocat- 
ing a portion of a training impulse, defined from daily 
training, through multipliers K, and Iz,, to represent ele- 
ments of performance p(t) termed fitness g(t) and fatigue 
h(t), each element is allowed to decay with an appro- 
priate time constant. Performance at a time tp is then 
arbitrarily defined as the difference between the sum of 
residuals of each element from each day of training at tD. 
This procedure is shown diagramatically in Fig. 1. Thus 
from the general equation in Ref. 3, defining perfor- 
mance p(t), performance at a specific future time tp is 

P&J = k,g(t,) - k&&J 

tP 
= 

[k 
le-@p--t)h - k2e-(tp-th] w (t) dt 

(1) 

s % = udw(w 
0 

and the influence curve is simply 
L(p) = kle+ - k2e-p’r2 (2) 

where p = tp - t is time before performance, measured 
backward from tp; t is the time for which training is con- 
tinued; and k, and k, are the fitness and fatigue multi- 
pliers, respectively, as defined in Ref. 6. This curve is also 
identical to the time course of performance that would 
ensue from a single-unit training impulse. In the present 
case the stimulus is the daily training impulse w(t) as- 
sessed both from the intensity of heart rate response to 
training and the duration of a session. The dimensionless 
impulse response L(p) transposed about the vertical axis 
graphically illustrates both the positive and the negative 
contribution of each day’s training from the start of a 
program to the point of competition tp. For a competition 
at time tD, performance p(t,) is determined by multiply- 
ing the training impulse w(t) by the influence curve L(p) 
to obtain a product function, the area of which represents 
the performance at t,. This is essentially a graphical rep- 
resentation of Eq. 1. In practical situations, w(t) is con- 
sidered to be a series of impulses each day, rather than a 
continuous function, in which case the integral above be- 
comes a summation where At = 1 day and 

= 5 [kle-(i-i)/‘1 _ k2e-(i-i)/ra]wiAt 
i=l 

= i L(pi)WiAt 
i=l 

(3) 

The function L(p) need only be evaluated once for a 
current set of model parameters 71, 72, k,, and k, and 
shows the influence of each increment of training on per- 
formance at tp and therefore serves as a useful template 
for optimal placement of training w(t). Figure 1 shows an 
example of p(t,) determined by the influence curve. No- 
tice that L(p) is constant, is assumed to be independent 
of training, and is dependent only on the four individual- 
specific model parameters estimated for an individual by 
regression of a predicted performance against criterion 
performance as described previously (6). Useful default 
parameters from which to begin this individual-specific 
iterative modeling have been found for several athletes 
(2) to be given by Q = 45 days, 72 = 15 days, k, = 1, and 
k = 2. Taking this approach, several observations are 
immediately apparent from the model proposed in Ref. 6 
as a consequence of the mathematical theory advanced 
here. 

Critical time frame for rest or reduced training before 
competition. Only training done earlier than a critical 
time before competition, defined as t,, has a positive ben- 
efit on performance at tp (although performances at later 
times may benefit, see Fig. 4). Training within t, days 
before competition will contribute more to fatigue than 
to fitness and logically should be avoided. This critical 
point is given by the time when the increment to fatigue 
begins to exceed that to fitness, i.e., when k,g(t,) = 
k,h(t,) for the unit training impulse case, or, using the 
default parameters proposed above, Q = 45, 72 = 15, k, = 
1, and k, = 2 

7172 k 2 
P 

=- In -= 16 days (4) 
71 - 72 k 1 

so that t, is 16 days before tp. 
Thus t, depends directly on individual-specific model 

parameters estimated from modeling-predicted perfor- 
mance, measured from training, against real perfor- 
mance responses (6). Table 2 shows how t, may range 
between 15.8 t 6.5. At its higher end (-23 days), t, ac- 
cords reasonably closely to a period, not of complete rest, 
but of reduced training before competition described for 
elite swimmers (21 days) (7) and to the time taken to 
achieve optimal performance (30 days) on endurance 
tests in moderately trained young men and women who 
trained for 10 wk and then reduced their training by 70% 
for a further 15 wk (5). 

Equation 4 is analogous to Eq. 10 in Ref. 6. However, it 
differs slightly, as the latter was derived for the case of a 
single impulse each day rather than the more general 
continuous training function assumed here. 

Time period before competition about which training is 
maximally beneficial. The greatest benefit, again using 
the default parameters 45, 15, 1, and 2 for 71, 72, k,, and 
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FIG. 1. A: performance p(t) may be considered as summation of residuals of contribution of each day’s training 
impulse decayed to performance time as in this example of training for interval t, (equal to 0, 20, and 50 days) for 
performance p(t) on day t, = 60. Note that a training impulse of 200 units results in increments to fitness [w(t) X kl] 
and fatigue [w(t) X Jz2] of 400 and 200 units, respectively, on day t = 0. These values decay exponentially to p(t,) as 
shown. Each subsequent training impulse likewise adds a contribution according to its initial magnitude. Contribution 
of each training impulse to ~(60) is shown by black area between curves and is negative when performance occurs 
before fatigue has decayed to 0. B: same result may be calculated with more insight using a single influence curve, which 
shows relative contribution of each training impulse to performance at single specific future time. Right-hand origin of 
influence curve [i.e., dimensionless ordinate of L(p) extending from negative 1.0 when k, = 2 and k, = l] is placed at 
point where optimal performance is desired and relative contribution of each training impulse is immediately clear. 
Note detrimental effect of last training session (black area), inasmuch as it is in negative region of influence curve. C: 
training at t, has greatest benefit to performance at $, whereas training done during interval between t, and the tp will 
be detrimental to performance at tp. Shape of this weighting (influence) curve depends on model parameters Q, 72, K,, 
and k2. See Glossary for definitions of abbreviations. 

k,, respectively, is derived from training performed at a their training for such a long period of time, although a 
time where the influence curve is maximally positive. similar period of gradual reduction seems acceptable (7). 
This is the time before competition when dL/dp = 0 and In addition, as previously noted, the values of both t, 

7172 k2 71 
and t, depend critically on individually modeled para- 

IA.=- In -- 
( 1 kl 72 

= 40 days (5) meters determined from training and may vary quite 
71 - 72 widely as estimated and shown in Table 2. The swimmers 

so that t, is 40 days before ti.,. noted in Ref. 7 reduced training gradually from 9,000 
It is especially interesting that the model recommends yd/day, 5 days/wk for 3 wk, to 3,000 yd/day for l-3 days/ 

no training be done within -16 days of the competition. wk. In addition, it has been observed in elite runners that 
This radical proposal is a practice not usually followed by reducing training volume from a normal baseline level by 
athletes. Few athletes would be willing to break from 70% and reducing frequency of training by 17% improved 



1154 OPTIMIZING ATHLETIC PERFORMANCE BY INFLUENCE CURVES 

k,= 1 
k2= 2 
7, = 45 Days 
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FIG. 2. Peak performance for a number of days of uniform training 
t, is achieved when this training is placed optimally about maximum 
ordinate of influence curve t,. Time to peaking tk shortens as duration 
of training t, is longer. Influence curve shown here is calculated using 
parameters shown at top. 

group mean treadmill running time significantly by 0.5 
min after 3 wk of reduced training. Group mean perfor- 
mance over 5,000 m also improved by nearly 5 s after 2 
wk of reduced training (5). 

TRAINING STRATEGIES 

Single performance. We consider next the case of how 
to maximize performance if an athlete trains at a con- 
stant intensity for t, successive days and then stops (Fig. 
2). The influence line shows how this training should be 
placed at the high plateau around t, in such a way as to 
maximize the area when w(t) is multiplied by L(p). Some 
examples for identical training each day are shown in 
Fig. 2. It should be noted how the time between termina- 
tion of training and peak performance (Q becomes 
shorter as the training time t, is longer. In fact, the exam- 
ples shown here are exactly analogous to those consid- 
ered in Fig. 4 of Ref. 6. Here, however, the influence line 
method has been used to achieve the same result with 
more insight. 

Performance at any arbitrary time may be calculated 
from Eq. 3. However, for the special case that uniform 
training of magnitude w, is maintained for t, days and 
stopped t, days before competition, the integral (I) of Eq. 
1 may be evaluated directly between the limits represent- 
ing the duration of training, as shown in the APPENDIX. 
Performance at the time of competition for this special 
case may then be calculated as a difference between the 
integrated function at the start and end of a uniform 
training segment 

preach t,. For example, if t, = 60 days of training at a 
uniform w, = 100 arbitrary units are followed by tk = 20 
days of rest, then for 71 = 45, 72 = 15, /z, = 1, and k2 = 2, 
the start and end of the training segment correspond to p 
= tk + t, = 80 days and p = t, = 20 days before competi- 
tion, respectively, and therefore from Eq. 6 

I(20) = 2,095 and I(80) = 746 

P&J = I(20) - I(80) = 1,349 arbitrary units 
The above example has analyzed performance only at 

a specific arbitrary time, saying nothing about the actual 
varying time course of performance p(t). However, by 
imagining the influence curve L(p) to be a movable tem- 
plate, performance may be advanced in time as illus- 
trated in Fig. 3 (top). The origin of the template is placed 
at any time where p(t) is desired, and succeeding perfor- 
mances at t,, t,, t,, and tp are given by the net value of the 
shaded areas (positive and negative) shown at the spe- 
cific times of competitive events. In this way, the influ- 
ence of a multiple-segment training regimen on perfor- 
mance at any given time becomes immediately apparent 
(Fig. 3, bottom). Alternatively p(t) may be calculated di- 
rectly by the explicit mathematical equations in Ref. 6 

w(t) rl 
1 1 

I  

0 t1 f2 f3 tp 

t, 

P(t) 

where (6) 

I(p) = (k171e-p’rl - k272e-p’r2)w, 

Performance will be optimal only if tk is chosen appropri- 
ately. As t, becomes very long the optimal t, will ap- 

FIG. 3. Top: influence curve may be used as a moving template to 
track performance in time (ti, t2, t,, tp). Origin is placed at point where 
performance is desired (successively from t, through t,>, and net (posi- 
tive plus negative) hatched area of influence curve shows relative con- 
tribution of training w(t) to performance p(t). Note that perfomance at 
time $, is highest because all training segments fall completely within 
positive region of influence curve for performance at time & (bottom). 
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A w(t) P 
I’ p2 

fP2 

fP2 

FIG. 4. A: theoretically optimizing training for 1st event at tPl re- 
quires a recovery/taper period, either entirely without or with rela- 
tively little training, for 16 days before performance. This abstention 
represents lost training for a subsequent event at tP2, as represented by 
the obliquely hatched area. B: alternatively, training up to dashed line 
of w(t) into negative region of influence curve for 1st event, which is 
represented by black shaded area, will reduce performance by 6P, at tPI 
but will improve 2nd performance by 6P2 at tP2 by a larger amount, i.e., 
by black shaded positive area around optimal ordinate of influence 
curve for performance at tp2. 

and in Eq. 6 above; however, the graphical representation 
provides a clear conceptual picture of a preparation strat- 
egy, unavailable in the explicit calculation. 

Several performances. The model predicts that an ulti- 
mate performance may only be achieved once in a sea- 
son, since peaking requires a period of rest tn before com- 
petition, which represents lost training for any subse- 
quent events. Optimizing performance in more than one 
event, therefore, demands a compromise. The influence 
curve shows how such a compromise might best be met. 
In Fig. 4A, two equally important events are scheduled 
arbitrarily 16 days apart. In optimizing for the first event 
(P,), using default parameters 45, 15, 1, and 2 for 71, 72, 

k,, and k,, respectively, t, (= 16 days) of training are lost 
for the next event (P,) if the negative effect of training 
too close to tpl is to be avoided. The cost of this lost 

opportunity of training for P, is given by the hatched 
area and happens to occur where training would be 
highly beneficial for the second event, i.e., in the positive 
hatched area around t, (Fig. 4A, bottom). In this par- 
ticular case, training for the second event can unfortu- 
nately only be done best immediately before the first 
event. Worse still, more events placed 2 wk apart thereaf- 
ter do not permit any training between events without 
some detrimental effect on these performances, depend- 
ing on the individual’s model parameters. A more likely 
strategy would be to train into the negative area of L(p) a 
little (dashed line area) to benefit subsequent perfor- 
mances at some cost to the immediate one, as in Fig. 4B 
where the positive effect for tp2 of training in the dashed 
line area impinges into the negative, detrimental area for 
performance at tpl. This depletes optimal performance 
from training by 6P, (black negative area) but thereby 
enhances performance at P, by 6P, by virtue of the extra 
training about t, undertaken (black positive area). 

The effect of-training for several-events may also be 
examined. Performance in each subsequent event is less 
than in the previous event, since the rest gaps before 
each competition represent cumulative lost training for 
future events. Figure 5 shows serial performance values 
(P,, P,, P,, P4) in arbitrary units when several events, 10 
days apart, are each in turn maximized at some training 
cost to the others. If it is assumed that tapering for 16 
days should be allowed to optimize performance for an 
event, then the event immediately before the one opti- 
mized can be allowed only 6 days of taper, and each com- 
petition two events or more before the one optimized can 
be allowed no taper at all before competition. These 
curves (Fig. 5, bottom) represent particular cases of 
training compromise, here shown to produce an increas- 
ing performance up to P, (along the path of the dashed 
line). Although it is clear that peaking may be designed to 
occur wherever desired, the best performance of all must 
necessarily be the one for which the longest and optimal 
training may be undertaken. Therefore, according to this 
model, if the athlete is out to break a record, it should be 
the last of a schedule of events, when all previous compe- 
titions have been compromised accordingly. Likewise, a 
best performance would be less likely early in the season, 
because less time has been devoted to training and the 
fitness time constant is relatively long. For example, 
peaking for an early event may compromise a later im- 
portant event, such as at the Olympic games. Whether or 
not optimal performance may best be achieved late in the 
season at the cost of earlier events is an issue with impor- 
tant implications. 

It must again be emphasized that in these simulations 
we have used the default coefficients 7, = 45, 72 = 15, k, = 
1, and k, = 2, which we have found-useful in making 
rough initial fits of predicted performance to real perfor- 
mance measures in the modeling process. They cannot be 
used to produce an accurate, general optimization sched- 
ule for a spectrum of individuals of different ability in a 
variety of events or even for a single individual at differ- 
ent stages of training. The essence of the procedure de- 
scribed for optimizing training is that it first depends on 
serial study of an individual’s response to a continuing 
training stimulus, as described previously (6). Because 
the latter method is continuously interactive with an indi- 
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FIG. 5. Effect of training on successive hypothetical competition 
performances <t, days apart within restricted period. It is assumed 
that performance takes place after 150 days of training (t, = 150) at 
constant w(t) of 50 arbitrary units. Optimizing performance for a single 
event among several subsequent events of equal importance involves 
training fully up to t, (in this case = 16) days before each competition 
PI, P2, etc. Thus each event shown has been optimized in turn, and each 
relative peak performance (in arbitrary units) is circled. Nonoptimal 
performances, at other event times resulting from optimizing perfor- 
mance for a chosen event, are also shown in each row. These values 
may be calculated from Eq. 3 or more directly from Eq. 6. For example, 
to maximize P,, training should stop on day 150 (so that p = tk = 16) 
and a peak value of 1,004 will occur on day 166 ($,). Likewise, maxi- 
mum performance at P2 occurs if training is carried on to day 160 (p = 
t, = 16 for tpZ and p = tk = 6 for tp,) and is then stopped. Performances 
resulting from this 2nd procedure are shown in 2nd row. On the other 
hand, a value of 668 units results for P, if training is carried on right up 
to day of competition, as is required in a strategy optimizing training 
for P3 (t,) or P, (t,). P, remains unchanged at this value as long as 
continuous training through P, ($,) persists in preparation for 1 of 
other events. 

vidual’s state of preparation, the model parameters are 
always current. Specific model coefficients estimated for 
an individual in this way are probably only viable for 
predictive periods no longer than 60 days. 

Sensitivity of tn and t, to model parameter values. The 
sensitivity of t,Bnd tg to variations in the model parame- 
ters Q, TV, K,, and k, IS shown in Table 1. Nominal values 
of 45, 15, l,, and 2 have been used, respectively, for the 
four model input parameters. Table 1 shows the effect of 
increasing and decreasing each parameter in turn by 
10%. Variations in 71 may be seen to have only a minor 
effect on t, and t,, whereas variations in 72, k,, and k, 
cause changes that are somewhat greater in relative pro- 
portion. 

Table 2 shows the effect on t, and t, of varying all four 
input parameters (Q, TV, k,, k,) together. The four param- 
eters were assumed to be normally distributed with 
means chosen as nominal values used in previous studies 
(l--3,6) from which individually modeled values have de- 

TABLE 1. Sensitivity of t, and tg to changes 
in model parameters 

71 72 kl iz, 

Nominal value 45 15 1.0 2.0 
%Change +10 

-10 
+10 
-10 

+10 
-10 

+10 
-10 

See Glossary for definitions of abbreviations. 

tn t ,  

15.6 40.3 
-4.3 +0.7 
+5.9 -0.3 

+15.8 +9.6 
-14.3 -9.2 
-13.8 -5.3 
+15.2 +5.9 
+13.8 +5.3 
-15.2 -5.9 

viated only moderately. Standard deviations have been 
arbitrarily estimated for them to show a reasonably large 
variation in a hypothetical population. A Monte Carlo 
simulation produced an effect in which 200 sets of ran- 
domized model parameter values were generated by com- 
puter such that they had the statistical distribution 
shown in Table 1. Values of tn and tg were then calculated 
independently for each set, and the overall distribution 
was determined. The calculated coefficients of variation 
for tn and tg in Table 2 demonstrate that Ess. 4 and 5 can 
have a significant effect in magnifying the variance of 
these two quantities and emphasize the importance of 
using individual-specific model parameters in their evalu- 
ation. 

The most interesting conclusion from this sensitivity 
analysis is that the nontraining, absolute rest interval tn 
predicted from model parameters is considerably longer 
than any absolute rest period that we have been able to 
determine is used in practice. This remains true even 
when considerable individual variation is taken into ac- 
count. However, as noted, rest as practiced by athletes is 
only relative, and an extreme reduction both in daily 
training and the frequency of training for an athlete may 
provide the equivalent optimal preparation as complete 
abstinence would provide in less well-trained individuals. 
The similarity of periods of reduced training (7-35 days) 
reported in the literature (4,5,7) and the range of values 
estimated for t,, which produce an increment in physical 
performance on a standardized test, for wide ranging abil- 
ity groups of male and female trainees is compelling. 

CONCLUSION 

The method of influence lines provides a useful tool to 
study, conceptually, the effect of training on perfor- 
mance at any given time. Although used with exponential 
functions in this case, the method is general and is valid 
for any other weighting function L(p) so long as perfor- 
mance represented by p(t) is linear with training w(t). 

TABLE 2. Effect of model parameter variabilities on t, 
and ts as determined by Monte Carlo simulation 

71 72 kl k2 tn 4 

Mean 45 15 1.0 2.0 15.8 40.1 
SD 7.0 2.5 0.1 0.3 6.5 8.3 
%CV 15.6 16.7 10.0 15.0 41.1 21 

Parameter SD values were chosen as described in text. CV, coeffi- 
cient of variation. See Glossary for definitions of abbreviations. 
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This is not a severe limitation, for if training does in fact 
have a nonlinear effect according to the training impulse 
definition, this is accounted for to some degree when the 
performance function p(t) is converted to a real measure 
of performance, such as an actual time, by some empiri- 
cal conversion equation. 

As has been seen using assumed model constants from 
previous studies (1, 3, 6), it is predicted that an athlete 
should terminate training w  16 days before competition. 
Most athletes would consider this far too long and would 
prefer to taper until almost to the time of competition. If, 
on the other hand, the model’s prediction has true valid- 
ity, it represents 
performance. 

an opportunity to produce even better 

Experiments are needed to test the model further 
under controlled protocols. In particular, work is needed 
to study the physiological processes occurring during the 
2-wk period before competition to determine the positive 
and negative aspects of training during this time. It is 
here that prediction and current practice are in maxi- 
mum disagreement. 

What are the specific time constant values and contri- 
butions of separate cardiorespiratory, cardiovascular, 
muscular, and motor coordination components to overall 
performance? For example, the training impulse by defi- 
nition reflects primarily cardiorespiratory effort; how- 
ever, strength may have a different set of constants, and 
some evidence from elite weightlifters already suggests 
this (2). How quickly do motor patterns decay, and to 
what extent might they contribute? The model attempts 
to incorporate these components into the four empirical 
parameters; however, further improvement is possible if 
the components themselves can be isolated. Further- 
more, why do time constants vary between individuals? 
How is this reflected by such factors as the muscle fiber- 
type ratio, biochemical indexes, or other performance- 
determining parameter? What is the role of light volumi- 
nous training versus short intense training? The multi- 
plying factor in the definition of the training impulse in 
the original model (6) attempts to account for this differ- 
ence. However, because typical training regimens involve 
patterns of varying intensities, it becomes apparent how 

not be an impulse but may have any arbitrary continuous his- 
tory w(t). At a specific future time tp, fitness g(t,) and fatigue 
h(t,) are the cumulative result of a series of infinitely small 
doses, each decayed exponentially during the time from when 
the incremental dose w(t)dt occurred to the time when its effect 
is desired, ti,. Therefore the total effect of all doses may be 
expressed as an integral of all previous time 

s % g&J = [esc~-t)‘rl]w( t)dt 
0 

s tp WJ = [e-(h-t)‘T2]w( t)dt 
0 

Some readers will recognize these as convolution integrals. Per- 
formance p( tJ follows from Eq. Al as 

s 

tp 
p( tp) = [kle-(Gmt)‘Tl - &e-(tP-t)‘T2]w( t)& (fw 

0 

Case of Uniform Training 

If uniform training, w(t) = w,, is carried out for a period of 
t = ts days followed by tk days of rest before performance of tp so 
that tp = ta + t,, then the integral (Eq. A2) may be evaluated 
directly, since w, is constant, between the limits of t = 0, the 
onset of training, and t = t,, the number of days of training 
completed 

s 
43 p( tp) = w, [ k1e-(t~Bt)/71 - k,e-(%-t)/72]& 

0 

= w, [-klqe -($~-t)/ll + k2T2em(b-t)/72]k 
(A3) 

If P&J is expressed in terms of the time previous to 
mance wh .en training ceases (CL), then 

perfor- 

= cc tp-t 

dCL = -dt 

and Eq. A3 becomes 

s 

tk 

P&l = w, 1 k 
- le-P/71 + k2emp”2] dp 

h+tk 

= w,[kl@71 - k2r2e-P’r2]t+tk 
(A4 

since when t = 0, p = tp = t, + tk and when t = t,, p = t, - t, = tk. 
Thus 

crucial the nature of this adjustment really is in practical 
terms. p@,) = ‘(tk) - I,, e. + tk) 

Some of these questions are clearly difficult to answer where 
at present. However, controlled experiments may be de- 
signed to isolate some of these factors in a way not possi- 

I(p) = [klrle-p’T~ - k2T2e-p’72]w, 

Derivation of t, and t, 

The critical time t, occurs when L(p) = 0 

ble with an athlete following an intuitive rather than a 
rigidly controlled program. Improvement of the model 
and design of optimal training strategies will no doubt be 
directly related to the number and success of controlled 
experiments designed to answer these fundamental ques- 
tions. 

L(p) = k1e-P’71 - k2e-P’T2 

k2 -= 
kl 

e-p’l/“-l/‘2) 

APPENDIX 

Derivation of p(tJ as an Integral 

In Ref. 6, performance p(t) was defined as the difference be- 
tween fitness g(t) and fatigue h(t) 

p(t) = k,gW - k,h(t) (A0 This interval corresponds to a time tn before competition at t,. 
where g(t) and h(t) were evaluated as iterated functions of dis- Training within tn days before tp begins to have a negative im- 
Crete training impulses wJt). In the general case, the dose need pact on p(t,). 
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dL k, e-rh 
-=-- - 

+ k2emP”2 -= 0 REFERENCES 
dcL 71 

k271 -= 
Jz172 

e-p(l/r+T2) 

kr 
P 

= QT2 ln 2 1 

71 - 72 J2172 

72 
1. 

2. 

This interval corresponds to a time $, before competition at tP, 3 
’ about which training is maximally beneficial for performance 

at tp. 
4. 

NOTE ADDED IN PROOF 

Since this paper went to press, a paper by Koutedakis et al. 5* 
(Br. J. Sport Med. 24: 248-252, 1990), specifically indicating 
performance in overtrained “elite” athletes was improved sig- 
nificantly by between 21 and 35 days of complete rest, has come 

6. 

to the authors’ attention. 

R. H. Morton was on sabbatical leave from the Dept. of Mathemat- 
ics and Statistics, Massey Univ., Palmerston North, New Zealand. 
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